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On the exact description of the Dirac particle in the scalar and 
pseudoscalar fields 

German V Shishkm 
Department of Theoretical Physics, Byelotussian State University, Minsk 220050, 
Byelorussia 

Received 1 December 1992 

Abstract. The problem of the exact solutions of the Dirac equation in the presence of the 
scalar and pseudoscalar fields is investigated by means of an algebraic method. Such an 
approach allow us to find all the configurations of the scalar and pseudoscalar fields 
where separation of variables is possible. Some general recommendations for the search 
of exact solutions of the Dirac equation in Cartesian coordinates are proposed and some 
exact solutions in curvilinear coordinates are discussed. 

1. Introduction 

It is well known that the description of almost all physical systems can be translated 
into the language of some universal partial derivative matrix-differential equation of 
first order [ 11. During the past few decades a great number of works have been dedicated 
to finding methods of exact solutions of such equations. In particular, while looking 
for a consistent theory of gravitation and quantum theory without contradictions, it is 
important to have different types of exact solutions of the Dirac equation. 

First at all we must note that we have, today, hundreds of exact solutions of the 
Dirac equation for the case of the external electromagnetic field. A comprehensive 
review of these solutions is given in the newly published book by Bagrov et al [Z]. 
Concerning the Dirac equation in the external gravitational field, here the first publica- 
tions that must be mentioned are the works of Brill and Wheeler [3] (central symmetrical 
case) and Chandrasekhar [4,5] (the Kerr metric, cylindric symmetry). In fact all 
subsequent publications in these topics continue the investigations of Brill and Wheeler 
in the case of the diagonal metric and those of Chandrasekbar in the case of the 
non-diagonal metric [6-261. Reviews of these publications are given in articles [lo, 261. 

It is natural that the complete analysis of the Dirac equation may not be limited 
to the above-mentioned electromagnetic and gravitational fields. Relativistic invariance 
suggests that the Dirac particle in the general case may be connected with the external 
world by means of scalar, vector, tensor, pseudovector and pseudoscalar interactions, 
these being associated with the internal symmetry group of the Dirac equation SU(4). 
We can also add the possibility of universal gravitational interaction, which as a gauge 
field is strongly coupled to the Poincark group. The attractiveness of the general analysis 
of the Dirac equation taking into account all the types of interactions is conlinned by 
concrete physical situations, e.g. the constructions of some confinement models (scalar 
potentials), the interaction of the anomalous magnetic and quadrupole, electric 
moments of the particle with the tensor of the electromagnetic field, and others. 
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The algebraic method of separation of variables proposed by us has been success- 
fully applied to the Dirac equation in different field situations, in particular, in 
gravitational fields with diagonal [6,10] and non-diagonal [25,26] metria, in an 
external vector field of a general type (not an obligatory electromagnetic field) [27], 
and finally, for the most general case, when there are all types of connections, namely 
scalar, vector, tensor, pseudovector, pseudoscalar and gravitational [9,28]. 

As almost all solutions of the Dirac equation are associated with electromagnetic 
and gravitational fields, the possibilities of exact solutions for the case of external 
scalar ( S )  and pseudoscalar (P) fields are considered in this article. A few works are 
dedicated to this problem. In the best-known articles [29-351, the problem is investi- 
gated only for the case of scalar field. The problem of the Dirac particle for different 
one-dimensional scalar potential has been discussed in [29-321. In [32] the author 
shows that the problem can be reduced to the solution of a Riccati equation depending 
only linearly on the potential. A different approach to this problem, connected with 
our algebraic method, is to reduce the Dirac equation, after separation of variables, 
to a system of two first-order coupled ordinary differential equations depending only 
linearly on the potential [33-351. Naturally, the problem may be translated to the 
language of the second-order differential equation for each component of the Dirac 
bispinor [3 SI. 

The most general analysis of the possibilities of exact solutions of the Dirac equation 
in the scalar and pseudoscalar fields is presented in this article. Two aspects of the 
problem are investigated here: (1) all scalar and pseudoscalar potentials are found, 
allowing the complete separation of variables in the Dirac equation, (2) general 
recommendations for the exact solutions of the Dirac equation in external scalar and 
pseudoscalar fields are given. 

2.. Separation of variables 

As the algebraic method of separation of variables ha5 been many times described in 
previous works [6, 9, 10, 21, 281, we limit the discussion here to some main points, 
and give only finished results of the separation of variables in the Dirac equation in 
the presence of the scalar and pseudoscalar fields, giving special attention to some 
peculiar cases. 

We write the Dirac equation in the following form 

3 Y' {if hj h,  h. 

j y j  y m  

- Jj+-aj+-Ja, +-a.+ m,+ U Y = { H } \ Y = O .  

Here hx are Lam6 functions. We have not shown summation on the indices i, j ,  m, n. 
Equation (1)  is written in the diagonal tetrad gauge, connected with the axe5 of the 
corresponding orthogonal curvilinear coordinate system. For the field member we have 

A,(x', x', x", x")  scalar interaction 

coupled S and P interactions. 
U = y5Ap(x', x', xm, x") pseudoscalar interaction (2) i As+y'Ap 

Redetermining the time variable to be in imaginary units we take all the Dirac 
matrices to be Hermitian. In this way we do not fix which of the variables are to be 
time dependent. 
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We separate the variables according to the scheme [6 ,  9, 10, 27, 281 

{H}*+.F{H}rr-*v+(% + I&)@ q=r@ (3) 

Here CY and p are collective indices of separating variables. r is 4 x 4 matrix and F is 
an unknown function meeting the requirement (5) under the most arbitrary field 
member (2 ) .  

The application of scheme (3)-(5) to equation (1)  leads to the following results. 

Cartesian coordinates 

The complete separation of variables in equation (1) in the presence of the scalar or 
pseudoscalar field is possible only when the field function is dependent on only one 
variable. In accordance with scheme (3)-(5) we have several ways of separation, all 
leading to one result, namely, that the field function depends on the variable x'. i.e. 
we have 

If we have scalar and pseudoscalar interactions simultaneously, complete separation 
of variables in equation ( 1 )  is possible when each field function depends on only one 
variable, but not necessarily the same variable. After applying scheme (3)-(5) we have 

(8) 
k j = { y ' J j + A s ( x ' ) + y 5 A p ( x ' ) + m o } y i y m y n  

e.mn ={#ai+ ymam + yna.}y$myn 

kmn ={yma,+y"a.+As(x"j+m,}y"y". , 

kv = {y id i  f yidj+ y5Ap(xi)}y'"y" 
( 9 )  

The separation of variables on which the field functions are not dependent is trivial, 
and we do not show the corresponding separating operators. The solution of equation 
(1) for these variables may be written as a free plane wave. 

General cylindrical curvilinear coordinates 

The new variables in this case are introduced in the plane XY: 

x = x ( ! 4  v )  Y = Y ( P ,  U). (10) 

Of course, complete separation of variables in equation (1) when the field functions 
depend on the variables not included in transformation (lo), i.e. z and  i it, is 
accomplished according to the scheme (3)-(5), but it is necessary to introduce the 
corresponding Lam6 factors before the curvilinear members in the separating operators. 
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We have a different situation when the field functions depend on the curvilinear 
variables. Now the complete separation of variables in equation (1) is possible on 
condition that the Lam& functions depend themselves on only one curvilinear variable, 
e.g. 

h ,  = A,= 9(U). (11) 

Note that this condition does not consider parabolic cylindrical and elliptic cylindrical 
coordinates. 

The Dirac equation written in the form (1) is connected to the diagonal tetrad 
gauge [27] and contains only two equal Lam6 functions, depending in the general case 
on two curvilinear coordinates 

h,  = h,= h ( p ,  U) h,= h,= 1. (12) 

Complete separation of variables in equation (1) in the case of the presence of one 
field (scalar or pseudoscalar) as well as in the presence of coupled scalar and pseudo- 
scalar fields is possible when the Lam6 functions satisfy the requirement (11) and the 
Eeld functions depend also only on the variable. After applying scheme (3)-(5) we 
have the following separating operators 

I?? = -ia, kr =-id, k,, = -id, 
(13) '" J , + A , ( u ) + y 5 A , ( u ) + y 4 ~ + y ' k ,  

Here E and k, are eigenvalues of operators I?, and kz. 

in equation (1) is impossible. 

Curvilinear coordinates with axis of symmetry 

The new space coordinates are connected with the Cartesian coordinates as follows: 

If only one field function depends on the variable p, complete separation of variables 

x 'fb, U) cos 'P Y =fb, U) sin 'P = gb. ,  U). (loa) 
There are now all three Lam6 functions in equation (l), and in the case of the diagonal 
tetrad gauge we have 

h, = h ,b ,  U). (12a)  
The complete separation of variables in equation (l), if As = A&) and AP = Ap(7), 

is accomplished according to the scheme (3)-(5) and leads to results analogous to 
(6)-(9), where the corresponding Lam6 Factors must be introduced before the curvi- 
linear members. In other cases complete separation of variables is impossible. Even if 

h, = h, = 9(u) h, = W ~ ) W P )  (14) 

(i.e. general spherical coordinates), and the field functions depend on p and Y (each 
or both function on one or both variables), only partial separation of variables is 
possible in equation (1) (7  and p from p and U). Now the separating operators take 
the following form 

h,, = h, = h(p ,  U) 
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Note that condition (14) does not consider the coordinates of oblate and prolate 
ellipsoids (spheroidal coordinates). 

So the possibilities of complete separation of variables in the Dirac equation in 
the presence of scalar and pseudoscalar fields are more limited than in the cases of 
gravitational [6,10] and vector [27] fields, in spite of the tensor structure of the scalar 
and pseudoscalar fields being very simple. The reasons are as follows: The gravitational 
field is introduced in the Dirac equation through generalized Lam6 functions. The 
requirements of types (11) or (14) lead to some conditions on the gravitational field, 
but these conditions may be satisfied [6, lo] so long as the geometrical introduction 
of the gravitational field through generalized Lame functions using the diagonal tetrad 
gauge does not lead to the appearance of additional matrices in the Dirac equation. 
As the electromagnetic (vector) field may be introduced into the Dirac equation by 
means of the 'lengthening' of the impulse (the minimal inclusion of electromagnetic 
interaction), this also does not lead to the appearance of new matrices in the Dirac 
equation. The field configuration doubling in structure by a factor of the corresponding 
Lame function (if the requirements (11 )  or (14) are satisfied) automatically provides 
complete separation of variables in equation (1) [27]. The inclusion of the scalar or 
pseudoscalar field introduces into the Dirac equation a new functional dependence 
with a new matrix factor: this is IAS(x') in the case of the scalar field (compare with 
the member in the absence of the fields Im,, where m, is the mass of the particle, i.e. 
a constant value), and ySAp(x') in the case of the pseudoscalar field. For the same 
reasons, the complications of such types takes place under the inclusion of other 
non-geometrized fields [9,28]. 

Special cases of separation of variables 

Let us consider the separation of variables in equation (1)  in the coordinates excluded 
by the requirements ( 1 1 )  and (14), using some special similarity transformations 
[10,27]. 

For general cylindrical coordinates, if condition (11) is not satisfied, we must show 
that for complete separation of variables in the Dirac equation, the interaction is 
accomplished with only one field (scalar or pseudoscalar), and the field function may 
depend on only one non-curvilinear variable (z or 7 ) .  The scheme of separation is 
analogous to the situation in the presence of a vector field [27]. Thus, complete 
separation of variables in the Dirac equation in parabolic cylindrical and elliptic 
cylindrical coordinates is possible only if the motion is free in the variables 1.1 and v. 

In the case of spheroidal coordinates when the requirement is not satisfied we use 
the similarity transformation as follows [27] 

y ' s - ~ y s  'D -f s - 9  Ss-l = I  

The condition 

y1S-lJlS+ y2S-'d2S=0 (17) 

h: = hz= a2-  b2 = c2-d2  

is accomplished automatically thanks to the orthogonality ofthe spheroidal coordinates. 
Now in order to separate the variables in equation ( I )  completely we must have 

h, = ab. (18) 
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After transformation (16),,t&ing into account the relation (17), we have that the 
complete separation of variables in equation (1) is possible only if 

a = a ( p )  or a ( u )  

b = b ( p )  or b ( u )  

c = c ( p )  or c( U )  

d = d ( p )  or d ( u ) .  
(19) 

Each function U, b, c, d depends on only one (not necessarily the same) curvilinear 
variable p or U. 

Equation (1) now takes the form 

+ ( m o + A s + y S A , ) ( c + d y  y y y ) @ = O  (20 )  1 2 3 4 1  
4 7 = x  3 p = X  I 2 p = x  9 u = x  

Taking into account the scheme (3)-(5) applied to equation (20) we have that 
complete separation of variables is provided by the following configurations of scalar 
and pseudoscalar potentials 

where 5 and l are arbitrary functions of one of the variables p or v, each depending 
on its own variables. 

So the very complicated coordinates of prolate and oblate ellipsoids allow the 
complete separation of variables in the Dirac equation in the presence of the field (21). 

3. Exact solutions 

General recommendations 

In view of the simplicity of the separating operators connected with scalar and 
pseudoscalar fields, it is possible to propose some general recommendations on the 
exact solutions of equation (1) even without concretization of field functions in its 
dependence on coordinate variables. 

Passing to the problem on the eigenvalues we have from (6) .. A 

K j @ = - K j , . @ = - k @ .  (22) 

xL=x x ' = y  X m = Z  x"=it .  (23) 

Now we accept 

we find the solution in the form 

= 0 exp{-i(&t - by- k s ) }  k 2 =  E ' -  k : -  k:. (24) 
It is natural that in the absence of field we have 

k2 = k:+ mi+  s2 = k:+ k:+ k:+ m i ,  (2% 

{ y S a ~ + y * y S [ A S ( x ) + m o ] +  k } Q = O .  (26) 

The function Q, according to (6), is defined by the equation 
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In the representation of the Dirac matrices in the form 

y * = i (  O I  ) 
- 0 3  -I 0 

for the components of the bi-spinor 0 we have 

O,(O,)=exp[ 1 [As(x)+moldx] h1(h4) 6,= C , G l  

(28) 
0 2 ( 0 3 )  = exp - [A,(x)+ m.] dx h2(h3) h3 = c2h2 ( 1  I 

where bk are defined by means of the ordinary differential equations of second order 

d’h, d& -+ 2[As(x) + mol -+ dx2 dx 

d h 2  

= 0 

-- d2b2 2 [ A s ( x ) + m o l 7 + k 2 6 , = 0 .  
dx2 dx 

The solution of these equations is possible only after concretization of the function As. 
In the case of the pseudoscalar field, the relations (22)-(24) also take place, but 

the bi-spinor 0, in accordance with (7), is described by the equation 

{Y4d,+ y’Ap(x)+y‘y5mO+k}0=0. (30) 
Accepting the representation 

Y q U 1  O ) 
Y 2 = ( r  0 1  o) 

y 3 4 u 3  O )  y‘=i( 0 1  ) 
0 -UI 

0 -U3 -I 0 

and introducing a new unknown function according to 

for the components 6, , we have 

d%, d& 
dx2 dx -~ 

d6., d2& 
dx2 dx 

-+2Ap(x) --(& k2)h1 = O  

2Ap(x) --(mi- k2)hz= 0. -_ 
(33) 

Unfortunately, we may not propose such simple recommendations in the case (8) 
when 0 is defined by the equation 

{Y5d ,  + y1yS[As(x)+ mol+ ylAp(x)+ k}O = 0 (34) 
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because it is not possible to reduce all the matrices of the equation yl, 7’ and ylys 
to one and the same structure. 

Regarding separation according to scheme (9), here the simplifications analagous 
to (28), (29), (32), (33) are possible, however, the optimal representation of the Dirac 
matrices must be accepted for each of the operators (9). This fact must be taken into 
account subsequently in the reconstruction of the bi-spinor. 

In particular we have, from (9) 

{yLd,+ y5Ap(x)+iy24+ k}y3y4@=0 (35) 

{y3d,+[As(x)+mo]-iy4~-k}y3y4@=0. 
Accepting for (35) the representation 

-0-3 

0 1  O I  

we have 

(37) 

y3y4@,(Q3) =exp Ap(x) dx 63 = c& 

y3y4@2(44)=exp m4 = c2@* 
(38) 

and 

d i 6 ,  d 6  -- 2 A , ( ~ ) ~ + ( k ~ + k : ) 6 ; ,  = O  
dx2 dx 

d2& d 6  -+2Ap(x) l + ( k Z +  k;)6,,=0. 
dx2 dx 

Analogously we have from (36) 

y3y4@,(03)=exp [AS(z)+mo-k]dz 

~’y~@~(@.,)  = exp [A&)+ in,, - k] dz  62(6)4) I 
c,6,, 64 = c26* 

d26,  d 6 1  
--j-+ 2[As(z) + mo- k] - - E % ~  = 0 
dx dx 

d& d2& 
dx2 dx 

2[As(z) + mo- k] -- E%)?= 0. -- 

(39) 

(41) 

(42) 



Dirac particle description in scalar/pseudoscalarflds 4143 

The concrete sets of As and A,  allowing the exact solutions of the equations (29), 
(33), (39), (42) in the special functions are given in [36,37]. 

Concrete examples 

As we cannot propose such simple recommendations for the exact solutions of the 
Dirac equation in the case of curvilinear coordinates as has been proposed in the case 
of Cartesian coordinates in the previous subsection, we are limited here to some 
concrete examples. 

(a)  Let us consider the interaction of the Dirac particle with the scalar field S = s/ r. 
The Dirac equation now takes the form 

Taking into account the scheme of separation (3) and believing r=  y1y4  we have 

As the angular operator 

is commuted with {H}, equation (44) may be rewritten as follows: 

where k is the constant of separation, i.e. the eigenvalue of the operator k 
Note that equation (43) is written in the diagonal tetrad gauge and therefore the 

operator K is different from the analogous operator written in the Cartesian tetrad 
gauge. But as has been shown by Brill and Wheeler [3], the radial equation in our 
situation must not depend on the tetrad gauge. As the angle varies here the so-called 
'coordinate effect' takes place. 

Equation (46) in the representation 

may be reduced to a system 

Finally equation (48) in the standard representation of the Pauli matrices 

u l=( l  0 1  o) & ( p  ;) . 3 = (  1 0  ) 
0 -1 
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leads to the equations 

which coincide with the well known radial equations of the hydrogen atom. They have 
exact solutions in terms of the degenerate hypergeometric functions. 

So we have standard results here: the scalar potential may lead to confinement. 
( b )  The interaction of the Dirac particle with the pseudoscalar field is described 

by the equation 

If we accept P = p / r ,  after separation of variables we have 

r z { H }  - { H } &  = 0. 

(54) 

(55) 
This result may be treated as follows: the particle is 'free' in the radial variable, 

but its moment is renormalized by the pseudoscalar field. 
( e )  A very interesting situation occurs in the case of the zero mass rest particle 

interacting with the scalar field S = s / r  and pseudoscalar field P = p / r  simultaneously. 
The Dirac equation now may be written as 

[ y ' J , + t  ( y2ae ts) +iy4J, + r r  

Separation of variables in this equation according to scheme (3) may be realized 
in two ways: 

( i )  r =  y l y 4  (57) 

1 [ y 1 y Z y 3 J ~ + ~ ( y 3 J g - - ~ + y 2 y 3 s  J , - y ' y " p  @ = O .  (60) 
2 

As the commuting relations between matrices before identical members of the 
equations (58) and (60) coincide, the same equations also coincide up to change SSP. 
Returning to the previous examples we note that the particle with non-zero rest mass 
may distinguish between the scalar and pseudoscalar fields, and the zero rest mass 
particle cannot distinguish between the two fields. 

Both equations (58) and (60) lead to the same radial equations that coincide with 
equations (51). The corresponding exact solutions are well known. 
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4. Discussion 

Concluding the present article we note that all the possible configurations of scalar 
and pseudoscalar fields allowing complete separation of variables in the Dirac equation 
for the Cartesian and curvilinear coordinates have been found here. As the exact 
solutions in the enumerated field situations we have here the necessary systems of 
second-order differential equations depending only linearly on the S and P potentials. 
This result coincides with the partial results of other authors [29-351. Some concrete 
differences between our results and the results of [29-351 are connected with the fact 
that we have considered the proper scalar potential when the field function is introduced 
into the equation with unit matrix factor. [35] considers the problem of the fourth 
component of the four-potential and the field function is introduced into the equation 
with the matrix factor y4 (see also the work by Cook [38]). 

Some words may be said on the unlooked-for 'symmetry' S e P  for the zero rest 
mass particle although this fact is outside the limits of this article. Taking into account 
the Dirac equation for the zero rest mass particle interacting with the scalar and 
pseudoscalar fields 

(61) { y r d k  + S+ y5P}\y  = 0 

and multiplying it by the matrix y5 on the left, we have 

{ ys ykax + y5s + ys y5P}* = 0. (62) 
Accepting the representation 

we have 

(64) 
[yk, ?"1+=[?'5?'k3 Y5Y'l+=2~hII 

5 2 -  I ( Y )  -- 5 -  $ 2 3 4 -  5 1 5 2 5 3 5 4  Y - Y Y Y Y  - Y Y Y Y Y Y Y Y  
i.e. y k  and y 5 y p  are connected by means of some similarity transformation 

(65) k - 1 -  5 I; S Y S  - Y Y .  
As a result the equations (61) and (62) may be rewritten in the following form 

Both the equations (61), (62) and (61a), (620) lead to the following form of the 

(66) 

Dirac equation: 

((1 i 7') yhJk+ (1  * y 5 ) S T  (1 3 y5)P}\y = O  

and the Fermi current takes the form 

J = P + ( l  i y5) yk*. 

So the procedure of the separation of variables in the D i m  equation for the 
massless particle automaticalty allows the possibility of two different helicities of the 
neutrino. The analogous result takes place for the massless Dirac particle in the external 
gravitational field as has been shown in [lo]. 
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